

2026/01

INSTALLATION MANUAL

Double Glass Modules

Jetion Solar (China) Co., Ltd.

Add: 1011 Zhencheng Road, Jiangyin, Jiangsu Province, P.R. China 214443

Tel: +86 (510) 8668 7300

E-mail: marketing@jetion.com.cn

Web: www.jetionsolar.com

JX-PI-RD-010 A0

Please read this manual carefully before installation and keep it for future reference.

INTRODUCTION	1
DISCLAIMER OF LIABILITY	1
1 CERTIFICATES REQUIREMENTS	1
1.1 IEC 61215&61730	1
1.2 UL	1
2 INSTALLATION REQUIREMENTS	2
2.1 Installation environment requirements	2
2.2 Orientation and tilt for modules installation	2
2.3 Materials requirements	3
3 MOUNTING METHODS	4
4 GROUNDING	7
5 WIRING	8
5.1 For the wiring, pay attention to:	8
5.2 The number of modules in series and in parallel in a system	8
5.3 PID effect prevention	9
5.4 Clean and protection of connectors	9
6 LOADING & UNLOADING AND TRANSPORTATION	10
6.1 Module Loading & Unloading	10
6.2 Transport Modules on Project Site	10
6.3 Storage	11
6.4 Unpacking for vertical landscape package	11
6.5 Unpacking for vertical portrait package	11
6.6 Module carrying	12
6.7 Others	12
7 MAINTENANCE AND CLEANING	13
8 CHECKLISTS	13
9 WARNING	13
10 HAZARD WARNINGS	14
Appendix 1 : Applicable Products	16
Appendix 2 : Electrical Specifications	16

INTRODUCTION

- Jetion Solar photovoltaic modules consist of crystalline silicon solar cells, high transmission and low iron tempered glass, anti-aging EVA and high flame resistant back sheet, and anodized aluminum alloy frame or galvanized aluminum-magnesium steel frame.
- Jetion modules are qualified for international standard IEC61215 and IEC61730. Jetion modules can be used in ground PV stations, roof solar systems, communication stations and BIPV etc.
- We are committed to providing technical and installation support for our customers worldwide.
- This manual contains important information regarding the installation, safe handling and maintenance of PV modules made by Jetion.
- All instructions should be read and understood prior to installation. The installer should conform to all requirements in this manual. The appropriate local standards and regulations, construction rules and safety instructions should also be followed during installation. All related work on a PV system must be carried out only by appropriately qualified and certificated engineers, who must be familiar with international and local the mechanical and electrical standards and principles including cable connection, building codes, etc for such PV system.

DISCLAIMER OF LIABILITY

- The installation, handling and use of Jetion modules are beyond company control. Therefore, Jetion assumes no responsibility for loss, damage, injury or expense resulting from improper installation, handling, use or maintenance.
- Jetion reserves the right to update the products, specifications or this INSTALLATION MANUAL without prior notice.

1 CERTIFICATES REQUIREMENTS

1.1 IEC 61215&61730

- Jetion modules are designed to meet the requirements of IEC 61215, IEC61730, and also fulfill the criteria of safety class II. Modules that are rated as safety class II may be used in systems operating with DC higher than 50V or 240W. Modules rated as safety class II and qualified for security authentication of IEC61730 are considered to meet the requirements of safety class II.

1.2 UL

- The electrical characteristics are within +/- 3% of the rated values of I_{sc} , V_{oc} and P_{mp} under standard test condition (irradiance of 100 mW/cm², AM 1.5, and cell temperature of 25°C).
- The Modules passed UL 790 class C fire tests, the slope of tested module is 5 inches (127mm) to the horizontal foot (0.3m), which is the most severe condition. To ensure the roof fire resistance rating, the minimum distance between the module frame and the roof surface is 115mm, and the installation method shall be conducted according to the local electrical safety regulations or laws.
- The modules have been evaluated by UL for a maximum positive or negative design loading of 50 lb/ft².
- Wiring methods should be in accordance with the NEC.
- For installation in Canada, the installation shall also be in accordance with CSA C22.1, safety Standards for Electrical Installations, Canadian Electrical Code, Part 1.

2 INSTALLATION REQUIREMENTS

2.1 Installation environment requirements

- **Avoid shading**

- Even if the smallest local shelter (such as dust deposition) will also decrease the output power.

- **Adequate ventilation**

- High temperature of the module may reduce the performance and output power of the module. Good ventilation can effectively avoid the overheating of PV modules.

- **Others**

- Do not install the module near inflammable gas.(such as gas station, air tank etc.)

- Do not install the module near naked flame or flammable materials.

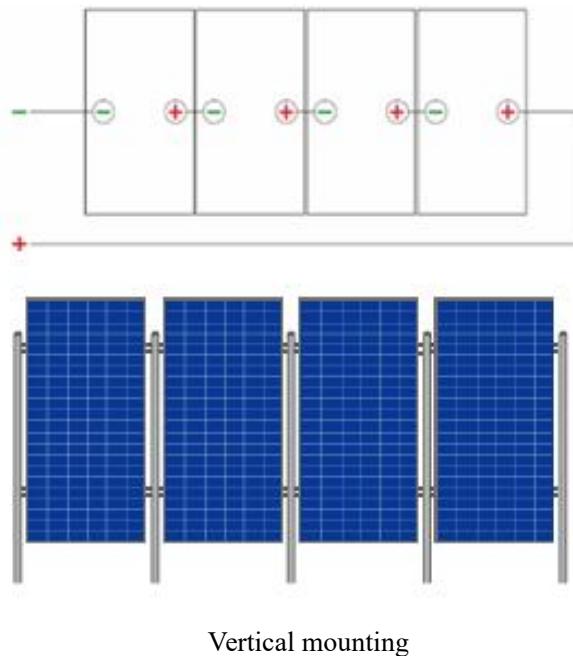
- Do not install the module in a location with potential extreme sand and dust damage.

- Do not install the module in a location with extreme air pollution, such as chemical vapors, acid rain, heavy metal particle fume, and/or soot.

- Do not expose the module close to a laser source.

- Do not install the module in a location with extreme hail and/or snow.

- Do not install the module in a location where it could be immersed in water or continually exposed to water from a sprinkler or fountain.


- Do not install the module in a marine environment and/or area where salty wind hit directly. It is recommended that the module should be installed at least 500m from the sea.

- Modules are intended for use in the temperature range from a lower environmental temperature of -40°C to the upper-limit set by a 98th percentile module operating temperature of 70°C

- The maximum rated altitude the PV module is designed for; de-ratings may be applied, $\leq 2000\text{m}$

2.2 Orientation and tilt for modules installation

- Jetion's high bifacial modules are installed using a dedicated vertical mounting method, enabling simultaneous high-efficiency power generation on both sides of the module. The installation schematic is shown below :
- To maximize the energy yield benefits of the vertical bifacial installation, the mounting structure must not cast shadows on either the front or rear sides of the modules, so as not to compromise power generation efficiency.

Vertical mounting

2.3 Materials requirements

● Support structure

- The module support structure must be constructed from materials that are wear-resistant, corrosion-resistant, and UV-resistant, meeting structural requirements. Both the support structure and the module mounting hardware must be designed to withstand local wind and snow loads.

● Bypass diode

- Partial shading of an individual module can cause a reverse voltage across the shaded module. Current is then forced to go through the shaded area by the other unshaded modules. When a bypass diode is wired in parallel with the series string, the current of unshaded area will be diverted around the shaded area and flow through the diode and bypass, thereby minimizing module heating and array current losses.

● Blocking diode

- In a system that uses a battery, blocking diodes are typically placed between the battery and the module output to prevent battery discharge at night and rainy weather.
- Diodes that are used as blocking diodes must have a:

Rated Average Forward Current [IF(AV)] above the maximum system current at the highest module operating temperature.

Rated Repetitive Peak Reverse Voltage [VRRM] above the maximum system voltage [Vmax] at the lowest module operating temperature (IEC: Vmax=1500V).

● Battery

- When solar modules are used to charge batteries, the battery must be installed in a manner which will protect the performance of the system and the safety of its users. The battery should be away from the mainstream of people and animal crowds. Select a battery site that is protected from sunlight, rain, snow, debris, and is well ventilated. Most batteries generate hydrogen gas when charging, which is explosive. Do not light matches or create sparks near the battery bank. When a battery is installed outdoors, it should be placed in an insulated and ventilated battery case specifically designed for the purpose.

● Cable and other components

- Ensure that all components meet the requirements of the system's maximum voltage, current, humidity, and temperature when they are exposed to sunlight. We recommend that all wiring and electrical connections comply with the appropriate national electrical and building code.
- A photovoltaic module is likely to experience conditions that produce higher current and/or voltage than

reported at standard test conditions. Factors to consider include module temperature and front side irradiance (and, for bifacial modules, ground or roof albedo, row spacing, and installation height). Accordingly, the values of VOC and ISC (or for bifacial modules, ISC-aBSI) marked on this PV module should be multiplied by a factor of 1,25 when determining voltage and current ratings for components connected to the PV output." "The safety factor of 1,25 given for the minimum voltage rating of the components in the example statement above may be modified during the design of a system according to the minimum temperature of the location of the installation and the temperature coefficient for VOC. The safety factor of 1,25 given for conductor current ratings values for ISC (or for bifacial modules, ISC-aBSI) may be adjusted based on the maximum values of irradiance incident on the front side of the module (and the rear side for bifacial modules). To this purpose, a full simulation for the specific location and module orientation (and for bifacial modules, ground albedo, row spacing and installation height) is required. Further guidance for the choice of a safety factor other than 1,25 is given in IEC 62548."

- Only cables with one conductor are to be used.
- The area of the cable mated with the connector is recommended to be 4~6 mm², length: 1000mm, temperature range:-40°C to 70°C. IMax. Series fuse(Mono-182: IMax. Series fuse=25A, Mono-210: IMax. Series fuse=30A).
- PV connector model/types and manufacturer to which the module connectors shall be mated.

Junction box	Bypass diode	Connector
JM07w	RT3550/RT4550	PV-JM608
PV011C-5	35SQ045/40SQ045	PV-ZH202B
FT50xy	MK4045/MK5045	RHC2xyzu

3 MOUNTING METHODS

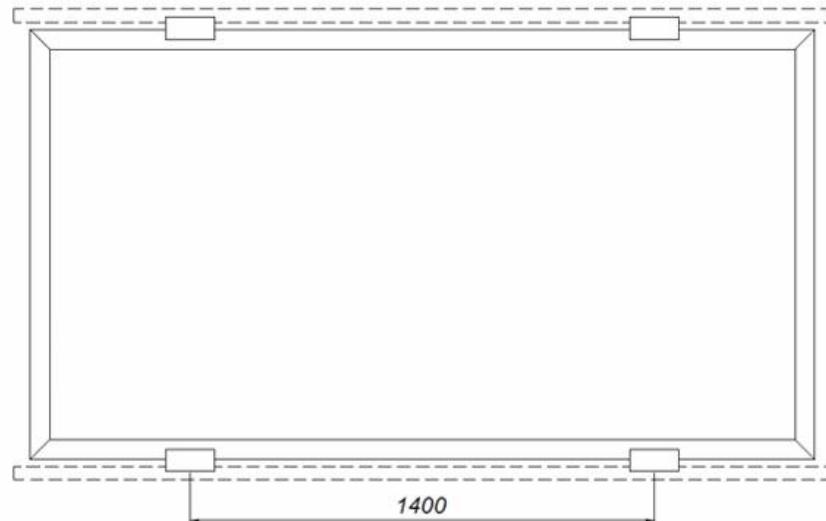
Type 1 - Clamp Installation:

- Quantity and Symmetry: A minimum of four clamps must be used to symmetrically secure each module.
- Clamp Selection:
 - Mid-clamps should be used to fixate adjacent modules.
 - End-clamps should be used at the string edges.
- Overlap Requirement: The overlap between the clamp and the module frame must be maintained within the range of 8mm to 10mm.
- Recommended Hardware Kit: The clamp installation is recommended to use the following configuration:
 - 1 x Mounting Clamp
 - 1 x Bolt
 - 2 x Flat Washers
 - 1 x Spring Washer

- 1 x Nut
- *(Note: Fastener material is recommended to be SUS304).*

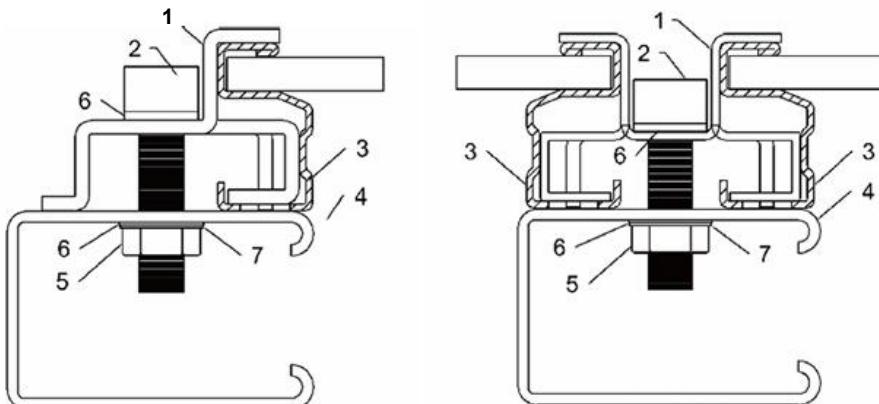
- Material and Dimension Specifications for Steel Frame Clamps:

- Material: Recommended S350GD.
- Length: $\geq 100\text{mm}$.
- Thickness: $\geq 2\text{mm}$.


- Installation Restrictions:

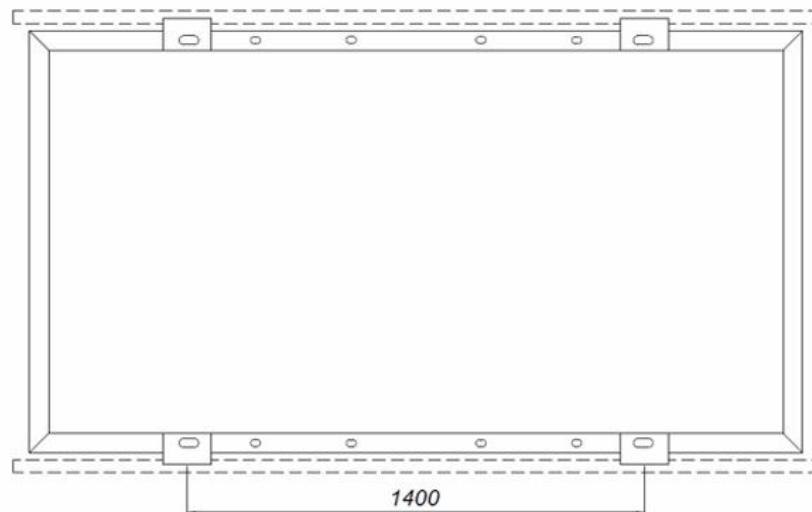
- Under no circumstances should the clamp touch the glass surface or cause deformation of the module frame.
- The contact surface between the clamp and the front of the frame must be flat and smooth to prevent frame damage and potential module breakage.

- Torque Specification: Use M8 bolts for tightening. The tightening torque must be within the range of 16 N•m to 20 N•m.

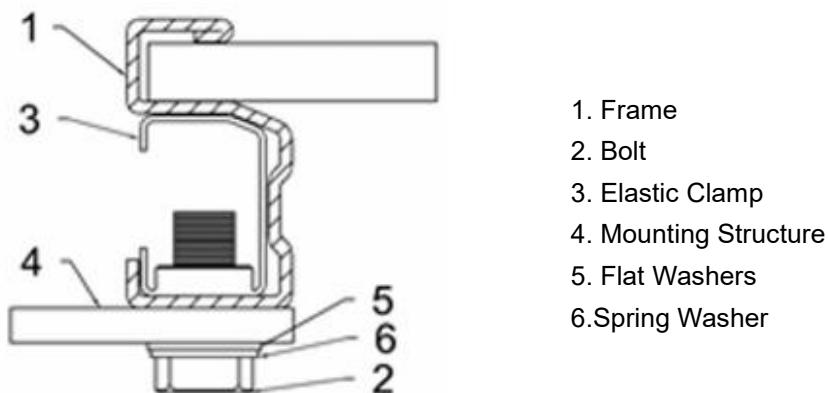

- Environmental Adaptation: The material and selection of clamps and fasteners can be adjusted based on the specific environmental conditions of the project site.

The installation schematic and illustrations are shown below:

Clamp Installation


The clamp installation schematic is shown below :

1. Mounting Clamp
2. Bolt
3. Frame
4. Mounting Structure
5. Nut
6. Flat Washers
7. Spring Washer


Type 2 - Bolt Installation:

- Installation Method: Secure the modules to the mounting structure using bolts in conjunction with specialized elastic clamps, fastened through the pre-drilled holes on the rear frame of the module.
- Fixation Requirement: As multiple mounting holes are available on the rear frame, a minimum of four holes must be symmetrically secured to ensure stability.
- Bolt Specification by Hole Size:
 - M8 Bolts: Must be used for 9x14mm mounting holes on the rear frame.
 - M6 Bolts: Must be used for 7x10mm mounting holes on the rear frame.
- Recommended Hardware Kit: For steel-framed modules, the following configuration is recommended:
 - 1 x Bolt
 - 1 x Flat Washer
 - 1 x Spring Washer
 - 1 x Elastic Clamp
 - *(Note: The material for the elastic clamp is recommended to be S350GD).*
- Torque Specification:
 - M8 Bolts: Tightening torque must be within the range of 16 N•m to 20 N•m.
 - M6 Bolts: Tightening torque must be within the range of 8 N•m to 12 N•m.
- Environmental Adaptation: The material selection and specifications for clamps and fasteners can be adjusted based on the specific environmental conditions of the project site.

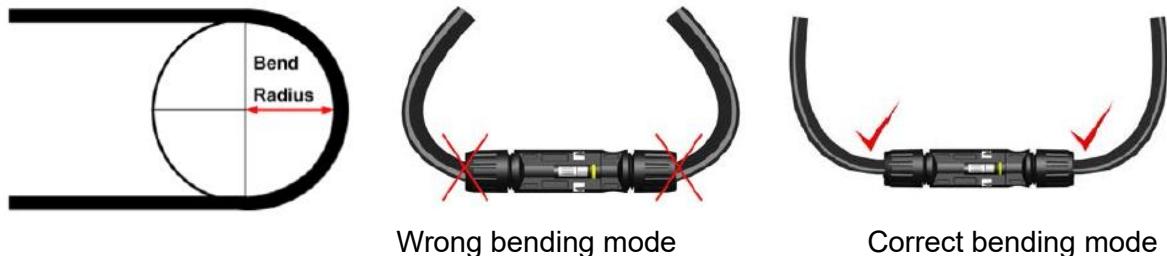
Bolt Installation

The Schematic of Bolt Fastening is shown below :

Test load specifications for Type 1 and Type 2 are as follows:

Module model	Clamp Installation(Pa)		Bolt Installation(Pa)
JTxxxSLk (B) xxx: 700-730	Positive	3000	3000
	Negative	3000	3000

4 GROUNDING

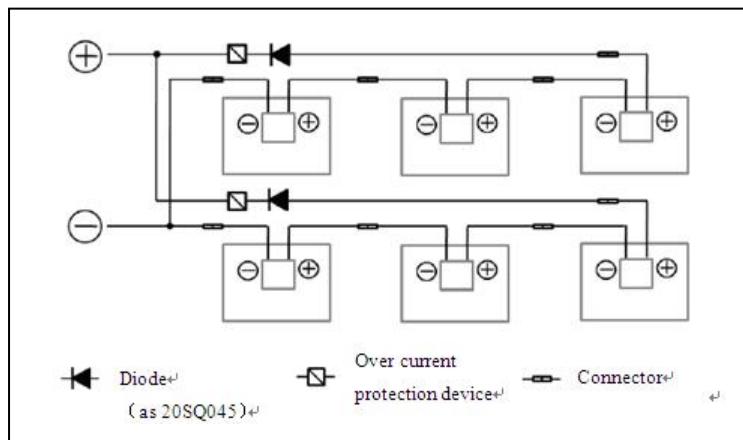

- To avoid the risk of electrical shock or fire, the module frame should be grounded before the electrical connection of the modules is operated.
- The frame shall be grounded in accordance with NEC Article 250(USA) or CEC in Canada.
- For an adequate grounding, the grounding hardware should penetrate the anodic oxidation layer.
- The grounding procedure may be waived when utilizing Jetion Solar steel-framed modules in conjunction with a metallic mounting structure.

5 WIRING

5.1 For the wiring, pay attention to:

- Correct wiring scheme: To minimize the risk of indirect lighting strike, avoid forming closed loops when designing the system. Check that wiring is correct before operating the photovoltaic system. If the measured open circuit voltage (Voc) and short-circuit current (Isc) are different from those in the specifications, there may be a wiring fault.
- The J-Box Jetion uses on the backside of the module is weatherproof and is designed to be used with standard wiring or conduit connections. Wiring methods should be in accordance to the NEC (National Electrical Code). Bypass diodes and cable clamps are included with each module when the modules are shipped out from the factory.
- Use modules of the same specification in the same system. When connected in series, all modules must have the same current. When connected in parallel, the modules must all have the same voltage. The quantity of modules to be connected should match the voltage specifications of the devices used in the system. The modules must not be connected together to create a voltage, which is higher than the permitted system voltage. When designing the system, please always take into consideration the variation of the voltage under different temperatures (please check the respective temperature coefficients of the modules, the Voc of the modules will rise when the temperature drops). The current and voltage data on module label are typical data. As for its actual tested data, please refer to the flash report.
- Make sure the connector is clean and the sealing ring is complete before connection. The male and female connectors shall connect tightly, and poor connection may cause the junction electrical leakage and burning at the junction. The shell of Junction box and the connector are of organic materials, so they cannot contact with organic solvents, otherwise they will get deformed or cracked.

The minimum bending radius of the module cable is not less than four times of the cable diameter.



- When the cable is fixed on the support, never damage the cable or module mechanically. Never press the cable with force. The special light-fast bundle and line card shall be used for fixing the cable properly on the support. Although the cable can resist sunshine and water, avoid direct sunshine and water as much as possible.

5.2 The number of modules in series and in parallel in a system

- When modules are connected in series, the total voltage should be less than the maximum system voltage Vmax (IEC: 1500V).
- When modules are connected in parallel, the total current should be less than the maximum system current.
- The modules shall be connected in a serial manner followed by the parallel way. If a reverse current exists, which exceeds the largest fuse current, an over-current protection device of equal specification

shall be used to protect the modules. If there are two or more parallels of modules, one over-current protection device and one anti-reverse charging diode shall be installed on each parallel.

- recommended maximum series/parallel module configurations

Formula	Maximum system voltage $V \geq N \times V_{oc} \times [1 + \beta \times (T_{min} - 25)]$
V	Maximum system voltage
N	The number of maximum solar PV modules in series
V_{oc}	The open circuit voltage of each module (see product label or data sheet)
β	Temperature coefficient of open circuit voltage of the module (refer to data sheet)
T_{min}	The lowest ambient temperature at installation site
Formula	$N \leq \text{fuse rating}/I_{sc} + 1$
N	The number of maximum parallel connection
I_{sc}	The short circuit current of each module (see product label or data sheet)

5.3 PID effect prevention

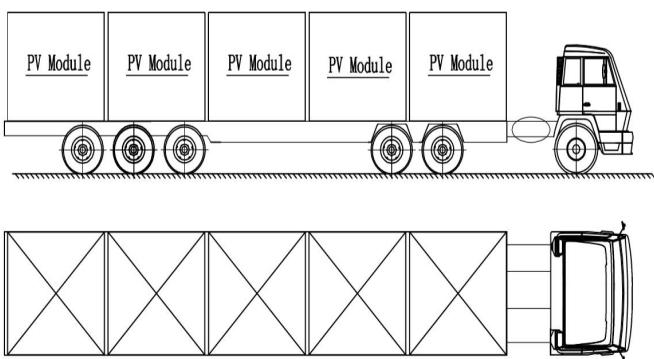
- It is recommended to adopt negatively earthed installation of inverter to avoid the PID effect for non-anti PID modules.
- It is recommended to adopt negatively earthed installation of inverter to avoid the PID effect for water PV projects.
- If the inverter does not have negatively earthed function, PID restorer (PID-box) can also be adopted.

5.4 Clean and protection of connectors

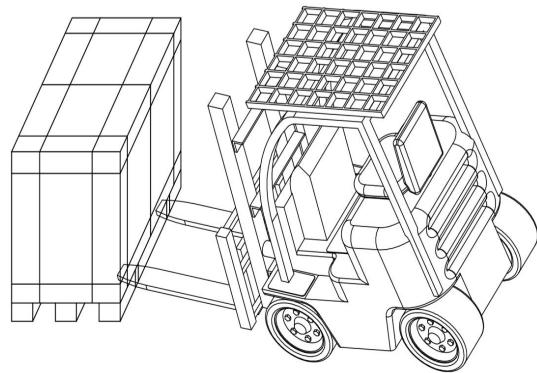
- During module installation, connectors are easily exposed in air, and even contact with the land, which causes pollution to connectors. It is not allowed to use organic solvents to clean connectors (eg. electrode cleaner), because it will easily cause a crack on the connector.

- The connector is easily corroded in the environment where there are the chemical substances below. Please never save it in the environment with chemical substances marked by “ \triangle ” in long term and never make it contact the chemical substances marked by “ \times ”.

No.	Type of chemical substances	Endurance capacity	NO.	Type of chemical substances	Endurance capacity
1	Aliphatic hydrocarbon	\times/\triangle	8	Ether	\times
2	Aromatic hydrocarbon	\times	9	Inorganic acid	\times/\triangle
3	Halogenated hydrocarbon	\times	10	Organic acid	\triangle
4	Ethyl alcohol	+	11	Oxidizing acid	\times
5	Phenol	\times	12	Alkaline	\times
6	Ketone	\times	13	Gasoline	\times
7	Ester	\times/\triangle	Note: +,good ; \triangle ,Moderate; \times ,Poor		


6 LOADING & UNLOADING AND TRANSPORTATION

6.1 Module Loading & Unloading


- If the modules are to be transported by containers, the fork tooth of electric forklift shall go from the pallet's short edge when lifting the pallets. The fork tooth's length must be longer than two-thirds of the pallets length, if fork tooth's length can not meet the requirement, a tooth sleeve shall be added to lengthen the fork tooth. If the modules are to be transported by platform cars, fork tooth can go from the pallet's long edge, but slotting space must be adjusted to the biggest, and go in the middle of the gap at the long edge. Forklift truck shall maintain a constant speed, forbid a sudden acceleration or stop, lift and drop slowly to avoid module concussion.

6.2 Transport Modules on Project Site

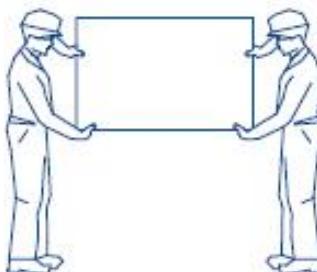
- If use flatbed truck to transport modules on the project site, the modules can only be moved as one layers stacking, as shown in Transportation/by flatbed truck(Fig a).
- If use forklift to transport modules on the project site, the modules can only be moved as one layers stacking, as shown in Transportation/by forklift(Fig b).

(a) by flatbed truck.

(b) by forklift.

Fig. Transportation

6.3 Storage

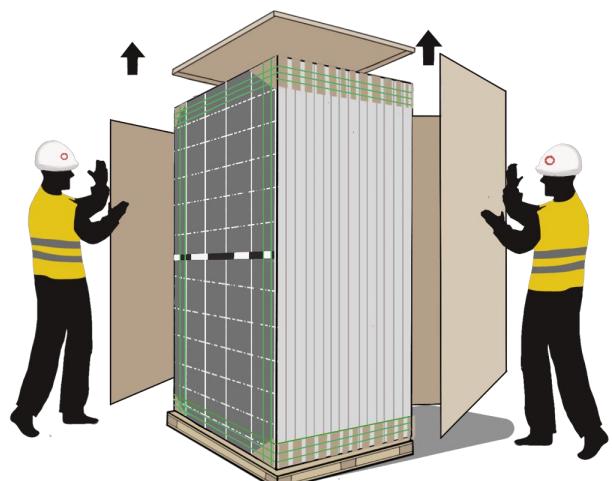

- Store the arrived modules properly to avoid breakage. Jetion modules are packed vertically, and each pallet is vertically placed with two boxes; Please separate the top box and bottom box once the modules arrived.
- For temporary storage, please store the modules in dry and well ventilated space, with temperature 0 - 40 °C, humidity: 30% -70%.
- The current grade labels of different colors are attached to the outer box and the frame. The same system shall be installed with modules of same current grade .
- If the modules are stored in an uncontrolled environment, they should not be stored for more than 3 months, and additional measures need to be taken to prevent the connector from moisture or the component from sunlight, and the packaging should be protected from damage.

6.4 Unpacking for vertical landscape package

- Correct unpack method:

First, tear off packing belts and wrapping Film, and open the top cover.;

Second, two constructors lift modules vertically from the package in turn, and take out modules. The remaining modules in the box shall be inclined to the other side.


Correct way to take out the module

6.5 Unpacking for vertical portrait package.

If the unpacked modules are not installed immediately, they should be fixed to the stand supporter with a safety rope under weather of 6 class wind (the modules should be less than 12 pieces).

① Remove the wrapping film and packing

② Remove the top cover and sealing tape , and then remove the carton box.

③ Place the stand supporter from the glass or backsheet side.

④ Cut off all the horizontal packing belts. When there are 1-2 vertical packing belts remaining, push the module gently to tilt toward the stand supporter.

⑤ Cut off the remaining packing belts so that the modules rest on the stand supporter.

⑥ Take out the modules in order.

6.6 Module carrying

- The module should be carried by two people with both hands whether it's to be moved or lifted. It's not allowed for a single person or a single hand to carry the module. It's forbidden to lift the module by grasping the junction box or cable.
- No more than 15 stacked components are placed with the glass side facing the top frame.

6.7 Others

- **Disclaimer of liability:** Jetion shall not be liable for any loss, damage, injury or expense resulting from irregular unpacking operations.
- Before the modules arriving the site, please don't unpack the box, and please protect the package

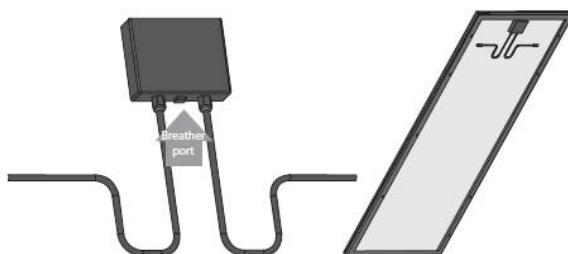
from damage.

- Smoothly loading and unloading the modules, don't place on a slope or seriously uneven ground to avoid the package slanting or falling. When stacking modules, do not exceed the allowed max layers printed on the package.
- Standing, climbing, walking or jumping on modules is prohibited under any circumstances. Localized heavy loads can create microcracks in the battery, which in turn can reduce component reliability.
- When unpacking outdoors, it is forbidden to do it in the rain. Because the outer packaging carton will become soft or damaged due to moisture, the modules in the box may tilt and tip.
- When handling or installing modules, do not support the modules by the back plate, neither the back plate can be forced.
- It is forbidden to drop or stack items (such as installation tools) on modules. At the same time, avoid the back plate of the module being scratched by sharp objects, scratches will directly affect the safety of the module.
- It is forbidden to expose modules or their electrical interfaces to unauthorized chemicals (e.g. oils, lubricants, pesticides, etc.). All electrical interfaces need to be kept clean and dry at all times.
- In the case of wind, more attention needs to be paid to the safety management of the site, especially in the strong wind environment, Jetion Sun does not recommend transporting modules in this environment. Modules that have been unpacked need to be secured in an appropriate manner.
- Operators should wear labor protection gloves.

7 MAINTENANCE AND CLEANING

- Do not change the PV components optionally (diode, junction box, plug connectors).
- Given a sufficient tilt (at least 15°), it is not generally necessary to clean the modules (rainfall will have a self-cleaning effect). In case of heavy dust adhesion (which will result in output reductions), we recommend cleaning the modules with plenty of water and using a gentle cleaning tool (for example, a sponge).
- Dirt must never be scraped or rubbed away when it's dry, as this will cause micro-scratches. We recommend that the system be inspected at regular intervals.
- Do not clean the modules with cold water during the warmer hours of the day in order to avoid creating any thermal shock that may damage the module.
- **CAUTION : DON'T USE DETERGENTS CONSISTING OF ABRASIVE, ACETONE OR OTHER CORROSIVE ELEMENTS.**

8 CHECKLISTS


- All fastenings are tight, secure and free of corrosion.
- All cable connections are secure, tight, clean and free of corrosion.
- All connectors are not damaged in any way.
- Checking the earthen resistively of metals.

9 WARNING

- The maximum load on the module must not exceed 30 lb/ft²(146.5 kg/m²). To avoid exceeding the maximum load, real-time load for specific areas such as wind and snow should be taken into account. When modules or strings are planned to be connected in parallel, a fuse should be used in each

string. The number of modules in series is based on the maximum system voltage of the module used, and the corresponding combiner box, inverter are matched.

- The open-circuit voltage of all modules in series should never exceed the max system voltage.
- The plug connector has its own polarity. Make sure that the connection is safe and tight. Ensure that they are in good electrical and mechanical condition.
- The plug connector should not receive extreme stress.
- Never pull the connector and cable forcefully and the well bound cable can be untied by special tools (such as pliers).
- Never rotate the fixed nut of the connector.
- Do not attempt to drill holes in the surface glass of the modules.
- Do not drill additional mounting holes in the frame of the modules.
- Do not hoist the module by the J-Box or cable.
- Never use a module with broken glass or torn substrate. Broken modules cannot be repaired and contact with any module surface or frame can lead to electrical shock.
- Do not install or handle modules when they are wet or during the period of high wind.
- Keep children well away from the system while transporting and installing mechanical and electrical components.
- Do not strike or physically damage the module.
- Avoid cutting and damaging the frame, the front side or the backside surface of the module during handling and installation.
- Do not stand or step on the module.
- Do not put extra objects on the module lest the glass will be broken.
- The J-Box must be on the higher side of the module when it is mounted.

- Do not dismantle or drop the module, and do not remove any attached nameplate or components from the module.
- Do not bend or twist the module.
- Do not apply paint or adhesive to module top surface.
- Do not use pointed or sharp objects with the module.
- Artificially concentrated sunlight producing a PV module's current above the value reported on the nameplate shall not be directed onto the front side or the back side of the PV module.
- Precipitation can run off through small openings on the back side of the module. Make sure that the openings are not masked after mounting.
- Do not wear rings, watch, and metal jewelry during installation.

10

HAZARD WARNINGS

Danger of death from electric shock!

PV modules generate electricity as soon as they are exposed to sunlight. One module generates a safe, extra low voltage level, but multiple modules connected in series (summing the voltage) or in parallel (summing the current) represent a danger. The following points must be noted when handling the solar modules to avoid the risk of fire, sparking and fatal electric shock.

- **Do not insert electrically conducting parts into the plugs or sockets!**
- **Do not fit solar modules and wiring with wet plugs and sockets!**
- **Exercise utmost caution when carrying out work on wiring and safety equipment (use insulated tools, insulated gloves, etc.)!**
- **Do not use damaged modules! Do not dismantle modules! Do not mark on the rear of the module using sharp objects!**
- **Exercise utmost caution when working on wiring and the inverter. Be sure carefully to follow manufacturer's installation instructions!**

Danger of death from arcing !

- **Modules generate direct current when light shines on them. An electric arc may be generated when connectors are used to turn the circuit on or off. Don't touch the connectors. When breaking a connected string of modules (e.g. when disconnecting the line from the inverter under load), a lethally strong arc can occur.**
- **Since the modules have been connected into working system, there would be electric arc while being switched off, so the operation should be finished by certificated, professional electrician.**
- **Ensure the connectors are clean and have not been contaminated, and that the electrical connection and mechanical joint are good!**

Appendix 1 : Applicable Products

No.	Cell/pcs	Cell Type	Module model	Size(L×W×T=Length×Width×Thickness)/mm	Mounting holes	Note
1	132	MONO	JTxxxSLk(B)	2384*1303*33/30	1400	xxx=700-730 xxx: in step of 5

Appendix 2 : Electrical Specifications

- Temperature Coefficient & Low Irradiance Performance:** Refer to the User Manual and Datasheet.
- Manufacturer's Tolerance:** The stated tolerance for **Voc**, **Isc**, and maximum power output under Standard Test Conditions (STC) is as follows:
 - Voc:** $\pm 3\%$
 - Isc:** $\pm 3\%$
 - Pmax:** $0\sim+5$

NO.	Module model	Pmax [W] /Tolerance	Voc [V] /Tolerance	Isc [Adc] /Tolerance	Vmp [V]	Imp [Adc]
1	JT700SLk(B)	700	50.00	17.43	42.1	16.63
2	JT705SLk(B)	705	50.15	17.49	42.25	16.69
3	JT710SLk(B)	710	50.30	17.55	42.4	16.75
4	JT715SLk(B)	715	50.35	18.10	42.44	16.85
5	JT720SLk(B)	720	50.4	18.18	42.48	16.95
6	JT725SLk(B)	725	50.45	18.26	42.52	17.06
7	JT730SLk(B)	730	50.5	18.35	42.56	17.16